Advanced Manufacturing To Enable New Solvents and Processes For Carbon Capture August 24, 2017 NETL CO₂ Capture Technology Meeting Joshuah K. Stolaroff

Lawrence Livermore National Laboratory

Carnegie Mellon University

New fabrication techniques can enable new materials and processes to achieve transformational carbon capture.

Microencapsulated CO₂ Sorbents (MECS)

Functionalized packing

FEW0194: \$4.45M over 3 years (April 15, 2015 – April 14, 2018) in five main tasks:

Encapsulation of Advanced Solvents \$475k/yr

Process design and scaleup with microcapsules -- \$475k/yr

CO₂ absorber design with advanced manufacturing

\$250k/yr

Rapid determination of solvent properties via microfluidic reactors

\$133k/yr

Process modeling collaboration with CCSI \$250k

Project Team

Collaborators

Carbon Capture Simulation for Industry Impac

Imperial College

London

Lawrence Livermore National Laboratory Joshuah K. Stolaroff, Congwang Ye, Du Nguyen, Katherine Ong, Jennifer Knipe, Sarah E. Baker, William L. Smith, James S. Oakdale, Bill Bourcier, Pratanu Roy, Matt Worthington, Christopher M. Spadaccini, and Roger D. Aines

Carnegie Mellon University

John Kitchen Elif Erdinc

HARVARD UNIVERSITY David Weitz Saraf Nawar

NATIONAL LABORATORY

David Heldebrant

Alissa Park

Camille Petit Spray-Tek

Jiten Dihora

Permeable solids can form intensified gas-liquid reactors.

✓ Also tolerates phase changes!

Microcapsules are high surface area, permeable microreactors that enable advanced solvents

...but encapsulating new solvents takes development.

Video of typical drop generation 1/1000 speed

Many commercial and custom-developed shell materials tried with favorites now selected.

Name	Manufac- turer	Material	Permea- bility (barrer)	Amine Compati- bility	Mechanical Properties	Curing Time
Semicosil 949	Wacker	Silicone	3100	Poor	Elastic, strong, tacky	30 min
SiTRIS	LLNL	Acrylic	400	After curing	Stiff, strong, untacky	10 s
Thiol-eneQ	LLNL	Silicone	2700	Yes	Elastic, strong, tacky	30 s
Thio-leneQ (gen. 2)	LLNL	Silicone	2700	Yes	Elastic, strong, tacky	~0.1 s
Tego Rad 2650	Evonik	Silicone	3200	After curing	Elastic, friable, untacky	10 s

Many solvents screened across four classes of shell material.

						Go end	Good properties for encapsulation		Marginal properties for encapsulation			Not compatible	
	Koech- anol	Koech- anol w/ 1:1 wt. water	DBU/He x-anol 1:1	NDIL 0274	NDIL 0252	NDIL 0231 w/ 1:1 wt. water	NDIL 0230	NDIL 0230 w/ 1:1 wt. water	NDIL 0309 (solid)	NDIL 0309 w/ 1:1 wt. water	Carbon- ate w/ water	NOHM -I-PEI w/ water	Sarcosine + carbonate
Semi- cosil						x		x			V	V	
Thiol- ene		V								v	V		V
SiTRIS						v		v w/ 1:3			V		
T.R. 2650		√ (un- stable)								1	V	V	V

Successful capsules cycled and measured for rate and capacity

Absorption: measured by change in CO2 partial pressure over time

Mesh platform

Valve for CO₂/vacuum

Capsules on mesh platform in jacketed vessel

Pressure transducer

Regeneration: heat capsules to 100-120C for 1 hour then measure absorption capacity

Left: tube furnace flowing wet nitrogen

Right: column flowing heated N2 and/or CO2

Rate, capacity, and morphology observed across cycles.

Collapsed capsules after cycling Solvent drops on capsule surface

appears to leak

Ionic liquids cycle like a charm; carbonate cycling is confounded by water transport.

Initial rates vary a lot, full-loading rates are similar across solvents.

First 30 s

First 5 min Summary of solvent classes encapsulated

- **NOHMs**: slower kinetics than carbonates in current formulations
- X Amino acids / amino acid-promoted carbonates: poor kinetics in capsule form
- **CO₂BOLs**: permeate shell / encapsulation may not be needed.
- ✓ Sodium carbonate with Cyclen catalyst: moderate kinetics / other advantages
- ✓ Ionic Liquids: NDIL0309 and NDIL0230 meet performance criteria.

Baking Soda

Two scale-up methods selected: parallel glass chips and a proprietary system (IDEA)

Chip system:

- Demonstrated for carbonates and NDIL0309
- 4 g/hr per device
- finicky for industrial use

IDEA:

- Demonstrated for selected shell materials
- 250 g/hr per device
- More robust, scaleable

Machine learning algorithms for automated quality control

Semi-empirical process model estimates reactor size

and cycle times.

Extensive data collected on isolated capsules

Validated with fixed and fluidized column measurements.

Color changes with loading during fixed bed testing

Initial results indicate reactor sizes are comparable to solvent systems.

Advanced packings

How to increase mass transfer at the gas-liquid interface?

Permeable solids help, but moreso for slow solvents.

~15% improvement with carbonates.

Surface wettability affects flow

Hydrophilic plate, Low velocity Hydrophilic plate, High velocity Hydrophobic plate, High velocity

What if we combine the hydrophilic and hydrophobic zones?

Flow in hydrophilic/ hydrophobic patches

Tailored surface wettability enhances mass transfer by 22%

This should hold across solvent classes.

Future plans

Primary objectives for Year 3:

- Top-level process design and cost estimate for Microencapsuled CO₂ Sorbents (MECS)
- Design of a small pilot with MECS
- Proof-of-concept demonstration with advanced packing motif

Acknowledgements

Lynn Brickett Andy Aurelio

Laboratory Directed Research and Development